AQUEOUS SOLUTION OF ACIDS,

BASES AND SALTS.

A substance which dissociates to produce hydrogen ions (H⁺) is an acid.

 $HCl \rightleftharpoons H^+ + Cl^-$

A base dissociates to produce hydroxide ions (OH⁻) in an aqueous solution.

 $NaOH \rightleftharpoons Na^+ + OH^-$

Acids and bases that are completely dissociated in water are called strong acids or bases (strong electrolytes). Example: $. HCl \rightleftharpoons H^+ + Cl^-$. HCl is the strong acid, which is completely dissociated in aqueous solution to form H⁺ and Cl⁻.

Names and Formulas of all the strong Acids and Bases

HClO ₄ Perchloric acid	LiOH Lithium hydroxide
HNO ₃ Nitric acid	NaOH Sodium hydroxide
$H_2SO_4^*$ Sulfuric acid	KOH Potassium hydroxide
HCl Hydrochloric acid	RbOH Rubidium hydroxide
HBr Hydrobromic acid	CsOH Cesium hydroxide
HI Hydroiodic acid	Ca(OH) ₂ Calcium hydroxide
	Sr(OH) ₂ Strontium hydroxide

Ba(OH)₂ Barium hydroxide

Acids and bases that are partial dissociated in water are called weak acids or bases (weak electrolytes).

Example: $NH_4OH \rightleftharpoons NH_4^+ + OH^-$. NH₄OH is a weak base. When dissolved in water it produces OH⁻ ions, but the OH⁻ concentration is considerably less than the NH₄OH concentration.

For the weak acids and bases dissociation is reversible process and can be characterized by equilibrium constant.

In the case of weak acid, for example, acetic acid, CH₃COOH, the equilibrium constant is called the <u>acid dissociation constant</u> K_a, and for the dissociation reaction $CH_3COOH \rightleftharpoons H^+ + CH_3COO^$ the equilibrium constant expression is $K_a = \frac{[H^+] \cdot [CH_3COO^-]}{[CH_3COOH]}$

The dissociation process for the weak base NH_4OH is written $NH_4OH \rightleftharpoons NH_4^+ + OH^$ and the equilibrium constant expression is

$$K_b = \frac{\left[NH_4^+\right] \cdot \left[OH^-\right]}{\left[NH_4OH\right]}$$

The term K_b is called the <u>base dissociation</u>

<u>constant</u>.

The values of K_a's and K_b's indicate the extents of dissociation of weak acids and bases. The larger the constants, the stronger the acids or bases. Dissociation constants must be determined by experiment.

CH₃COOH K_a = $1.8 \cdot 10^{-5}$ HCN hydrocyanic K_a = $4 \cdot 10^{-10}$ greater than (HCN less acid than CH₃COOH) CH₃COOH stronger than HCN Salts are strong electrolytes. Salts are completely

dissociated in water.

We may write: $NaCl \rightleftharpoons Na^+ + Cl^ Al_2(SO_4)_3 \rightleftharpoons 2Al^{+3} + 3SO_4^{2-}$

The reaction between acids and bases is called <u>neutralization reaction</u>.

Base + Acid = Salt + H_2O

Bases react with acid to produce salt and water.

Equations for acid – base neutralization reactions can be written in molecular, ionic and net ionic form.

Molecular: NaOH + HCl = NaCl + H_2O Ionic: Na⁺ + OH⁻ + H⁺ + Cl⁻ = Na⁺ + Cl⁻ + H_2O Net ionic: OH⁻ + H⁺ = H_2O

A neutralization reaction simply involves the combination of hydrogen and hydroxide ions to

form water.

The pH scale

The equation of dissociation of H₂O is $H_2 O \rightleftharpoons H^+ + OH^-$ in water solution H+ exists as hydronium ion H_3O^+ . $H_2O + H_2O \rightleftharpoons H_3O^+ + OH^$ in this process, an H₂O molecule transfers a proton to another H₂O molecule.

The equilibrium constant expression for this process is $K_w = [H_3 O^+] \cdot [OH^-]$ or $K_w = [H^+] \cdot [OH^-]$

This equilibrium constant also has a special name the <u>ion-product of water</u>, in pure water at $25^{\circ}C$: $[H^{+}] = [OH^{-}] = 1.0 \times 10^{-7}$ $K_{w} = [H^{+}] \cdot [OH^{-}] = 10^{-7} \cdot 10^{-7} = 1.0 \times 10^{-14}$

The pH is the negative of the logarithm of $[H^+]$ $pH = -\log[H^+]$

A pH of 7 represents a neutral solution. The pH less than 7 the solution is acidic; the pH greater than 7 indicates than the solution is basic.

The pOH is defined in an analogous fashion to pH

$pOH = -\log[H^{-}] \text{ or } [OH^{-}] = 10^{-pOH}$

We can write the equilibrium constant for water in a new way: $-\log K_w = -\log [H^+] - \log [OH^-] = -\log [1 \cdot 10^{-14}]$ $pK_w = pH + pOH = 14$ pH + pOH = 14

Hydrolysis

This reaction, in which water reacts with an ionic species in solution, is called <u>hydrolysis</u>.

Salts of strong acids and strong bases (for example, NaCl) do not hydrolyze: PH=7. $NaCl + H_2O = no \ reaction$

Salts of weak acids and strong bases (for example, CH₃COONa) hydrolyze, producing a basic solution: pH>7. $CH_3COONa + H_2O \rightleftharpoons CH_3COOH + NaOH$ $CH_3COO^- + Na^+ + HOH \rightleftharpoons CH_3COOH + Na^+ + OH^ Na^+ + HOH =$ no reaction Water reacts with a CH₃COO⁻ to produce OH⁻. A solution of CH_3COONa has a pH>7.

Salts of strong acids and weak bases (for example, NH₄Cl) hydrolyze, producing a acidic solution: pH<7.

 $NH_4Cl \rightleftharpoons NH_4^+ + Cl^ Cl^- + H_2O \rightleftharpoons no \ reaction$ $NH_4^+ + H_2O \rightleftharpoons H^+ + NH_4OH$ $NH_4Cl + H_2O \rightleftharpoons NH_4OH + HCl$

Salts of weak acids and weak bases (for example, NH₄CH₃COO) hydrolyze, but whether the resulting solution is neutral, acidic, or basic depends on the relative values of K_a and K_b.