Chemical Kinetics

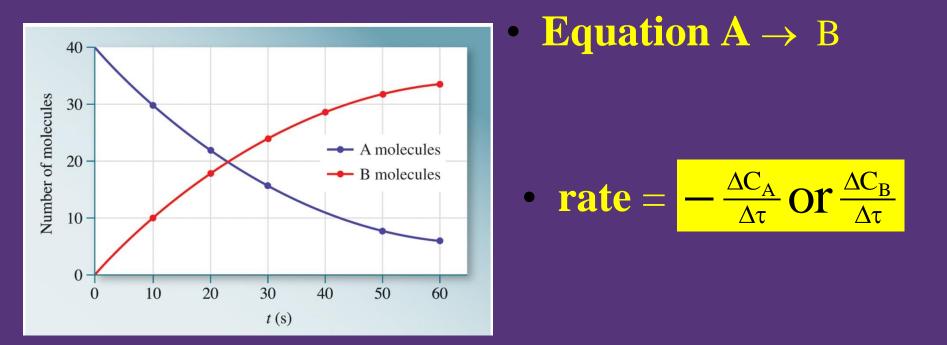
Lecture 5

Chemical reaction rate. Chemical equilibrium.

- Chemical kinetics is the study of reaction rates, how reaction rates change under varying conditions, and what molecular events occur during the overall reaction.
- Chemical reactions require varying lengths of time for completion.

- Some reactions
- are fast
- (photosynthesis)

Some reactions are slow (conversion of diamond to graphite)


We will study such questions

- How is the rate of a reaction measured?
- What conditions will affect the rate of a reaction?
- How do you express the relationship of rate to the variables affecting the rate?
- What happens on a molecular level during a chemical reaction?

Rate of Reaction

- Expressed as either:
 - Rate of disappearance of reactants (decrease or negative)
 OR
 - Rate of appearance of products (increase or positive)

Average Reaction Rate

• Why the negative on [A]?

Average Reaction Rate

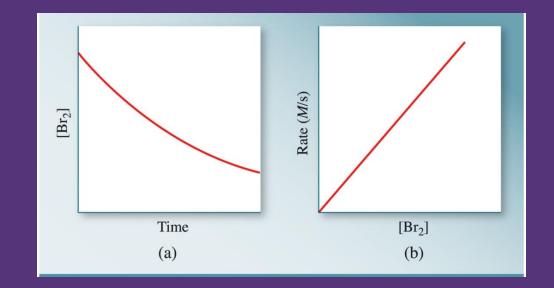
Br₂(*aq*) + HCOOH(*aq*)→2Br⁻(*aq*) + 2H⁺(*aq*) + CO₂(*g*) Note: Br₂ disappears over time

© The McGraw-Hill Companies, Inc./Photo by Ken Karp

Average Reaction Rate $Br_2(aq) + HCOOH(aq) \rightarrow 2Br^-(aq) + 2H^+(aq) + CO_2(g)$ Rates of Reactions Bromine and Formic acid at 25 C

Time (s)	[Br ₂] (<i>M</i>)	Rate (M/s)
0.0	0.0120	4.20×10^{-5}
50.0	0.0101	3.52×10^{-5}
100.0	0.00846	2.96×10^{-5}
150.0	0.00710	2.49×10^{-5}
200.0	0.00596	2.09×10^{-5}
250.0	0.00500	1.75×10^{-5}
300.0	0.00420	1.48×10^{-5}
350.0	0.00353	1.23×10^{-5}
400.0	0.00296	1.04×10^{-5}

Calculate Average Rate


• Avg. rate =

$$\frac{[Br_2]_{final} - [Br_2]_{initial}}{t_{final} - t_{initial}}$$

• Avg. rate = $\frac{0.0101 M - 0.0120 M}{50 s - 0 s}$ = 3.80×10⁻⁵ M / S

Average Rate

- Average rate depends on time interval
- Plot of [Br₂] vs time = curve
- Plot of Rate vs [Br₂] = straight line

Instantaneous Rate

 Instantaneous: rate at a specific instance in time (slope of a tangent to the curve)

0.012 -Rate at 100 s: 0.010 2.96×10^{-5} M/s Rate at 200 s: 0.008 $2.09 \times 10^{-5} M/s$ $[Br_2](M)$ Rate at 300 s: 0.006 $1.48 \times 10^{-5} M/s$ 0.004 0.002 0.000 0 100 200 300 400 t (s)

Rate Constant

- Using data from PreviousTable
- - what can you conclude?

Time (s)	[Br ₂]	Rate (M/s)
50	0.0101	3.52 x 10 ⁻⁵
250	0.00596	1.75 x 10 ⁻⁵

When the $[Br_2]$ is halved; the rate is halved Rate is directly proportional to $[Br_2]$ rate = $k [Br_2]$ k = proportionality constant and is constant as long as temp remains constant

Rate Constant

- If we will calculate the value of the rate constant for any set of data we get basically the same answer!
- $k = \text{rate} / [\text{Br}_2]$

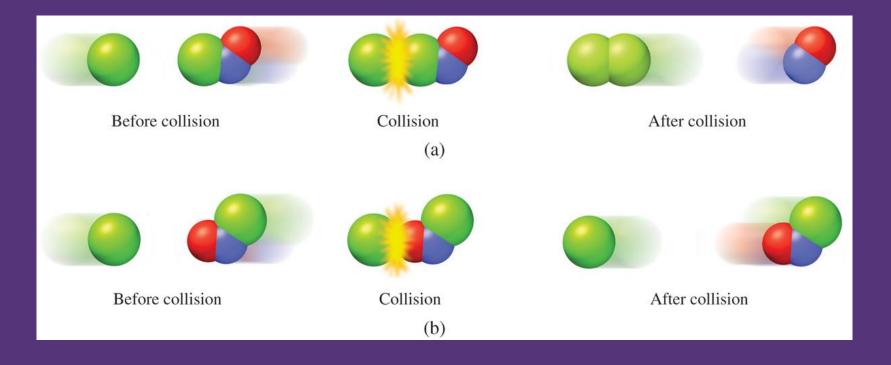
$$k = \frac{3.52 \times 10^{-5} M/s}{0.0101 M} = 3.5 \times 10^{-3} /s$$

Dependence of Reaction Rate on Reactant Concentration

 Rate law expression For the general equation: $aA + bB \rightarrow cC + dD$ rate law = $k[A]^{x}[B]^{y}$ k = proportionality constantx and y = the order of the reaction with respect to each reactant

Order

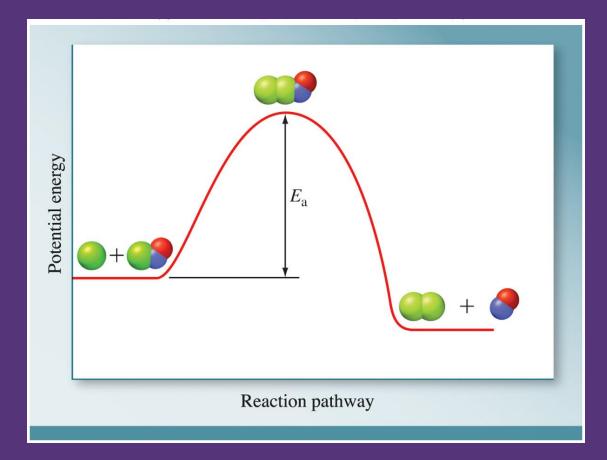
- Exponents represent order
- Only determined via experimental data
 - 1st order rate directly proportional to concentration
 - 2nd order exponential relationship
 - 0 order no relationship
- Sum of exponents (order) indicates overall reaction order


Dependence of Reaction Rate on Temperature

Most reactions occur faster at a higher temperature.

Collision Theory

- Particles must collide in order to react
- The greater frequency of collisions, the higher the reaction rate
- Only two particles may react at one time
- Many factors must be met:
 - Orientation
 - Energy needed to break bonds (activation energy)


Collision Theory

Collision Theory

- Though it seems simple, not all collisions are effective collisions
- Effective collisions: a collision that does result in a reaction
- An activated complex (transition state) forms in an effective collision

Activation Energy

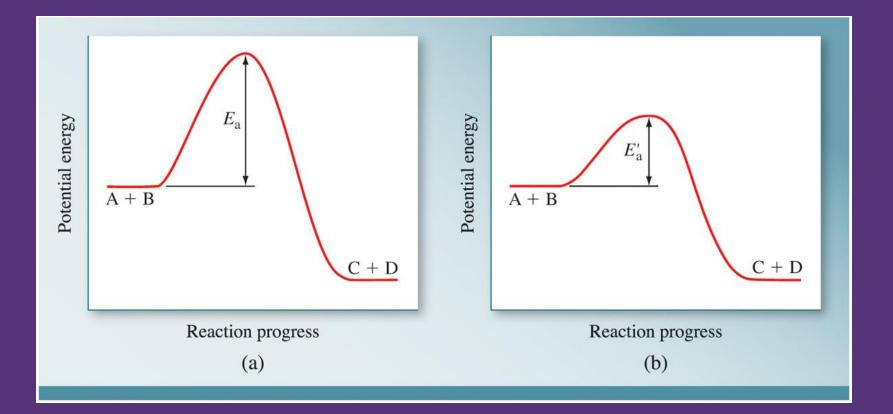
The Arrhenius Equation

• The dependence of the rate constant of a reaction on temperature can be expressed

$$k = Ae^{-E_{\rm a}/RT}$$

 E_{a} = activation energy R = universal gas constant A = frequency factor T = Kelvin temp

We will use empirical rule of Van't Hoff.

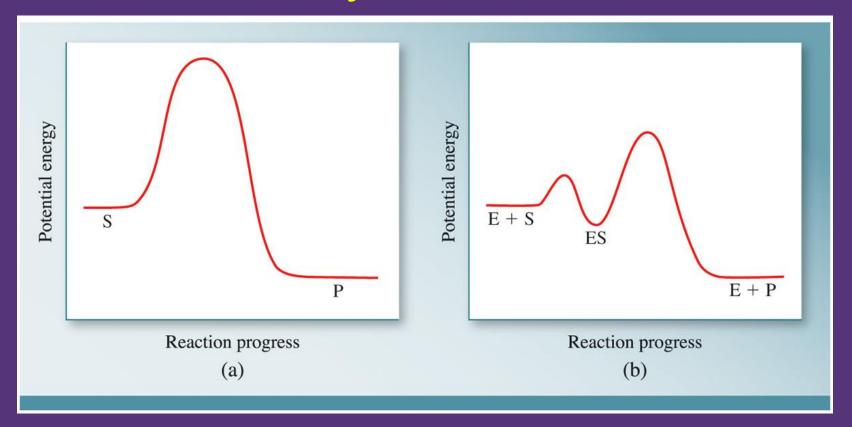

Such rule states that when the temperature rises for every 10, the rate of chemical reaction increases by a factor of 2-4.

$$\frac{\text{RateT2}}{\text{RateT1}} = \gamma^{\frac{\text{T2}-\text{T1}}{10}}$$

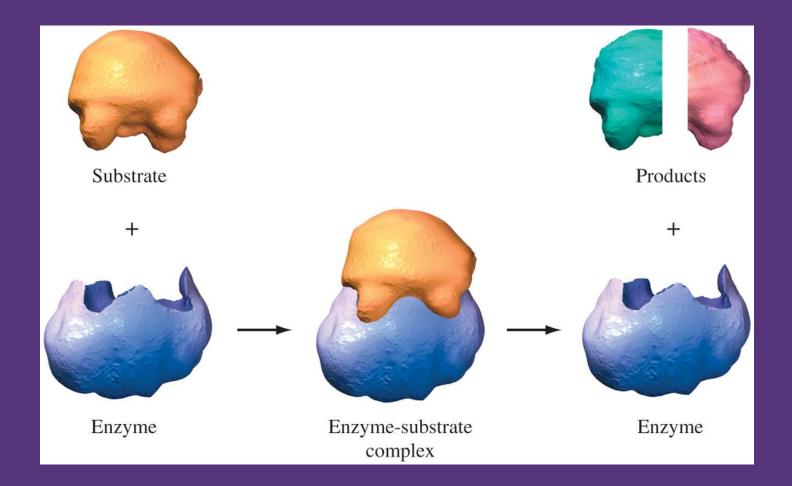
Dependence of Reaction Rate on Catalysis

- Catalyst a substance that increases the rate of a chemical reaction without being used up itself
- Provides a set of elementary steps with more favorable kinetics than those that exist in its absence
- Many times a catalyst lowers the activation energy

Reaction Pathway with Catalyst

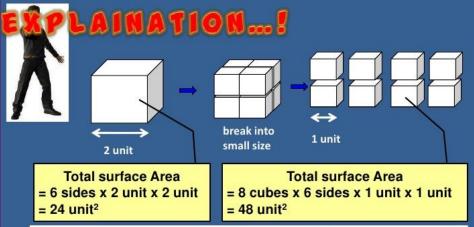

Types of Catalysts

- Heterogeneous catalysts reactants and catalyst are in different phases
- Homogeneous catalysts reactants and catalysts are dispersed in single phase
- Enzyme catalysts biological catalysts


Biological Catalysts

- Enzymes: large protein molecule that contains one or more active sites where interactions with substrates occur
- Enzymes are highly specific (lock and key)

Reaction Pathway without and with Enzyme-Substrate



Enzyme-Substrate Complex

Dependence of Reaction Rate on Surface area of a solid reactant

-Because the reaction occurs at the surface of the solid, the rate increases with increasing surface area.

Size of reactant (solid) decrease, total surface area for reaction occurs increase, reaction occurs faster, rate of reaction is higher.

The state of a reaction in which the rates of the forward and reverse reactions are the same.

Le Chatelier's principle, also called Chatelier's principle or "The Equilibrium Law", can be used to predict the effect of a change in conditions on a <u>chemical equilibrium</u>. The principle is named after <u>Henry Louis Le Chatelier</u> and sometimes <u>Karl Ferdinand Braun</u> who discovered it independently.

Chemical equilibrium

A statement of Le Chatelier's Principle If a dynamic equilibrium is disturbed by changing the conditions, the position of equilibrium moves to counteract the change.

Chemical equilibrium

$N_2 + 3H_2 \Leftrightarrow 2NH_3; \Delta H < 0$

LE CHATELIER'S PRINCIPLE

STRESS	SHIFT	WHY?
increase concentration of a substance	away from substance	extra concentration needs to be used up
decrease concentration of a substance	towards substance	need to produce more of substance to make up for what was removed
increase pressure of system	towards <i>fewer</i> moles of gas	<u>for gas</u> : pressure increase = volume decrease
decrease pressure of system	towards <i>more</i> moles of gas	for gas: pressure decrease = volume increase
increase temperature of system	away from heat/ energy exothermic reaction is favored	extra heat/ energy must be used up
decrease temperature of system	<i>towards</i> heat/ energy <i>exothermic</i> reaction is favored	more heat/ energy needs to be produced to make up for the loss
add a catalyst	NO SHIFT	The rates of both the forward and reverse reactions are increased by the same amount.