ОДЗ №1

По учебной дисциплине "Коррозия металлов и защита от коррозии"

Задача студент выбирает соответственно № варианта указанного преподавателем: 1. Определить скорость равномерной коррозии алюминия, магния в миллиметрах на год и в граммах на квадратный метр-час, если плотность коррозионного тока для алюминия равна i A/m^2 ; а для образца магния размером L мм за 24 часа в морской воде изменение массы составило Δm г. Для каждого варианта параметры представлены в таблице. Оценить стойкость данных образцов по десятибалльной шкале стойкости.

Вариант	Значение плотности	Размеры	Изменение
	коррозионного тока (А)	образца магния	массы образца
	$i, A/M^2$	L, mm	магния Δm , г
1	0,093	25x30	0,012
2	0,094	20x30	0,011
3	0,095	25x35	0,013
4	0,096	20x35	0,011
5	0,097	30x40	0,014
6	0,098	35x30	0,014
7	0,08	25x40	0,015
8	0,081	20x40	0,015
9	0,082	25x45	0,016
10	0,083	45x30	0,016
11	0,084	20x20	0,009
12	0,085	25x25	0,01
13	0,086	35x35	0,012
14	0,087	45x35	0,014
15	0,088	15x50	0,008
16	0,089	15x40	0,007
17	0,09	15x30	0,006
18	0,091	15x45	0,007
19	0,092	15x55	0,008

2. Определите термодинамическую возможность газовой коррозии низкоуглеродистой стали, протекающей по уравнению

$$Me(T) + CO_2(\Gamma) \Leftrightarrow Me_xO_y(T) + CO(\Gamma)$$
.

если изделие (Ме) (см. № варианта) эксплуатируется при температуре Т= (см. № варианта) и парциальных давлениях СО₂ (см. № варианта) и СО (см. № варианта). Определите соотношения парциальных давлений СО₂ и СО при заданной температуре и диапазон температур для заданных парциальных давлений, при которых коррозия невозможна. Используйте справочные данные из табл..2.2

Вариант	Значение температуры (°С)	Me	Давление CO ₂ (кПа)	Давление СО (кПа)
1	100	Fe	10	90

2	200	Al	20	80
3	300	Bi	30	70
4	400	Cd	40	60
5	500	Co	50	50
6	600	Cr	60	40
7	700	Cu	70	30
8	800	Fe	80	20
9	150	Mg	90	10
10	250	Mn	15	85
11	350	Mo	25	75
12	450	Ni	35	65
13	550	Pb	45	55
14	650	Sn	65	35
15	750	Ti	75	25
16	850	Sb	85	15
17	900	Ti	95	10
18	950	V	100	20
19	1000	Zn	110	10

Таблица 2.2 Термодинамические параметры некоторых металлов и оксидов

Вещество	$-\Delta H^0_{298}$ кДж/моль	S ⁰ ₂₉₈ Дж/моль К
Ag	0	42,7
Al	0	28,34
В	0	5,87
Bi	0	56,4
$C_{rpa\phi}$	0	5,74
С алмаз	1,897	2,38
Cd	0	51,5
Co	0	285
Cr	0	23,78
Cu	0	33,37
Fe	0	27,177
H_2	0	130,6
Hg	0	77,29
Mg	0	32,53
Mn	0	31,78
Mo	0	28,60
N_2	0	191,6
Ni	0	29,88
O_2	0	205,166
Pb	0	64,35
S	0	31,9
Sb	0	45,69
Si	0	18,84
Sn	0	51,5
Ti	0	30,7
V	0	29,12
W	0	335
Zn	0	41,66

Ag ₂ O Al ₂ O ₃ As ₂ O ₃	30,59 1675,6	£1.00
		51,02
	653	107,2
B_2O_3	1264,4	54,05
BaO	558,5	70,3
Bi ₂ O ₃	578	151,6
CO	110,5	198,04
CO ₂	393,77	213,78
CaO	635,1	39,8
CoO	239,5	43,9
Cr ₂ O ₃	1130,4	81,2
Cu ₂ O	166,8	93,95
CuO	155,3	43,5
FeO	260,7	54,0
Fe ₂ O ₃	822,7	90
Fe ₃ O ₄	1122	145,6
$H_2O(\Gamma)$	242,1	188,86
H ₂ O (ж)	286,034	69,987
HgO	90,887	70,5
MgO	602,23	26,8
MnO	385,2	59,75
MnO_2	521,3	53,2
MoO ₃	754,9	78,28
N ₂ O	-81,6	220,11
NiO	242,8	38,6
PbO	219,4	67,8
Pb ₃ O ₄	735,2	211,4
SO_2	297,1	248,7
Sb ₂ O ₃	699,6	123,1
Sb ₂ O ₅	963	125,1
$SiO_2(\alpha)$	880,1	42,12
SnO	286,4	56,5
SnO ₂	581,1	52,3
TiO	518,7	34,79
TiO ₂	944,2	50,28
V_2O_3	1239,7	98,72
V_2O_5	1559,6	1310
$\overline{WO_3}$	840,88	83,32
ZnO	348,3	43,5
	,	

3 . Для указанной пары металлов (табл. 1) - определение , возможна коррозия отдельно каждого металла данной пары в среде с указанным значением pH при контакте с влажным воздухом , - Напишите уравнения электродных процессов ; предложите для данной пары материал катодного и анодного покрытия. При каких значениях pH возможна коррозия металла с водородной деполяризацией для одного из металлов вашей пары. Какой тип катодной деполяризации возможен в случае коррозии для указанных металлов при комнатной температуре и следующих парциальных давлениях водорода и кислорода $P_{H2} = 70000~\Pi a~P_{O2} = 210000~\Pi a$

варіант	Пара металів	рН	варіант	Пара металів	рН
1	Pb-Sn	12	16	Zn-Cd	7
2	Sn-Cu	6	17	Fe-Sn	5
3	Fe-Co	10	18	Fe-Cd	4
4	Cu-Co	4	19	Zn-Cu	2
5	Co-Ni	5	20	Fe-Cu	2
6	Sn-Cd	4	21	Fe-Co	4
7	Cd-Cu	12	22	Fe-Ni	8
8	Zn-Ag	10	23	Sn-Ag	10
9	Cd-Pb	6	24	Cd-Cu	7
10	Fe-Cu	5	25	Mg-Cu	12
11	Fe-Pb	3	26	Cd-Ni	4
12	Sn-Ag	4	27	Zn-Ag	11
13	Zn-Ni	6	28	Cu-Zn	4
14	Mg-Ni	10	29	Al-Cu	2
15	Zn-Sn	8	30	Mg-Sn	9

Rb*/Rb	Rb*+e ≒ Rb	-2.925
K*/K	K*+e ≒ K	-2,925
Ba²⁴/Ba	Ba²+ + 2e ≒ Ba	-2,906
Ca ² */Ca	Ca ²⁺ + 2e ≒ Ca	-2,866
Na*/Na	Na⁺+e ≒ Na	-2,714
Mg ²⁺ /Mg	Mg ²⁺ + 2e ≒ Mg	-2,363
Al ³ */Al	Al³+3e ≒ Al	-1,662
Mn ^{2*} /Mn	Mn²+ + 2e ≒ Mn	-1,180
Zn²+/Zn	Zn²+ + 2e ≒ Zn	-0,763
Cr³+/Cr	Cr³+ + 3e ≒ Cr	-0,744
Fe ²⁺ /Fe	Fe ²⁺ + 2e ≒ Fe	-0,440
Cd ²⁺ /Cd	Cd ²⁺ + 2e ≒ Cd	-0,403
Co ²⁵ /Co	Co²+ + 2e ≒ Co	-0,277
Ni ²⁵ /Ni	Ni²+ + 2e ≒ Ni	-0,250
Sn ²⁺ /Sn	Sn ²⁺ + 2e ≒ Sn	-0,136
Pb ²⁺ /Pb	Pb ²⁺ + 2e ≒ Pb	-0,126
H⁺/H ₂ (Pt)	H⁺ + e ≒ 1½ H ₂	0,000
Cu ^{2*} /Cu	Cu ^{2*} + 2e ≒ Cu	+0,337
Cu ⁺ /Cu	Cu ⁺ +e≒Cu	+0,521
Hg ₂ ^{2*} /2Hg	Hg ₂ ²+ + 2e ≒ 2Hg	+0,798
Ag [†] /Ag	Ag⁺+e ≒ Ag	+0,799
Hg²*/Hg	Hg²+ + 2e ≒ Hg	+0,854
Pt2*/Pt	Pt²+ 2e ≒ Pt	+1,19
Au ^{s*} /Au	Au³+3e ≒ Au	+1,50