гидрокси- и оксокислоты

План

- 1. Гидроксикислоты.
- 1.1. Методы получения.
- 1.2. Химические свойства.
- 1.3. Биологически важные гидроксикислоты.
- 2. Оксокислоты.
- 2.1. Методы получения.
- 2.2. Химические свойства

Большинство биологически важных органических соединений (метаболиты, биорегуляторы, структурные элементы биополимеров, лекарственные средства) являются гетерофункциональными соединениями. Наиболее важные из них - гидрокси-, оксо- и аминокислоты.

1. Гидроксикислоты

Гидроксикислоты – гетерофункциональные соединения, содержащие карбоксильную и гидроксильную группы. По взаимному расположению функциональных групп различают α -, β -, γ - и т.д. гидроксикислоты.

$$R-CH-COOH$$
 $R-CHCH_2-COOH$ $R-CH(CH_2)_2-COOH$ OH OH OH OH OH OH

В природе широко распространены полигидроксикарбоновые кислоты (содержат нескольно гидроксильных групп) и гидроксиполикарбоновые кислоты (содержат несколько карбоксильных групп).

1.1. Методы получения.

Общие методы получения.

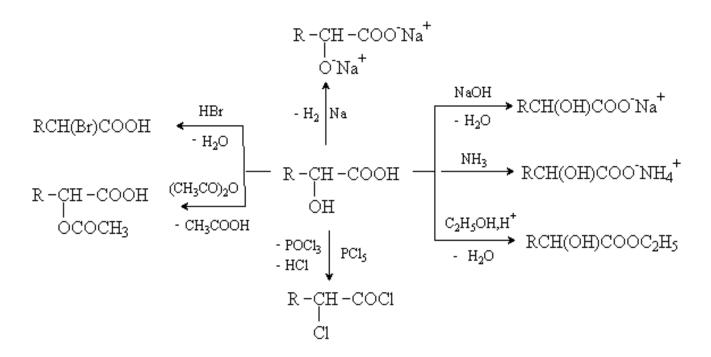
1) Гидролиз галогензамещенных кислот.

RCH(CH₂)_nCOOH
$$\xrightarrow{1) \text{OH}, \text{H}_2\text{O}}$$
 RCH(CH₂)_nCOOH OH OH

2) Взаимодействие аминокислот с азотистой кислотой.

$$\begin{array}{c} \text{RCH}(\text{CH}_2)_n\text{COOH} & \xrightarrow{\text{HNO}_2} & \text{RCH}(\text{CH}_2)_n\text{COOH} \\ \text{NH}_2 & \text{OH} \\ \\ \text{n=0-3} \end{array}$$

3) Восстановление оксокислот.


Методы получения α -гидроксикислот.

 α -Гидроксикислоты получают из доступных α -галогензамещенных аминокислот (метод 1), из природных α -аминокислот (метод 2), восстановлением α -оксокислот (метод 3). Специфический метод получения α -гидроксикислот – циангидринный синтез.

$$R-C \stackrel{\bigcirc{}{\sim} H}{\stackrel{}{\sim} H} + HCN \longrightarrow R-CH-CN \xrightarrow{H_2O,H^+} R-CH-COOH$$

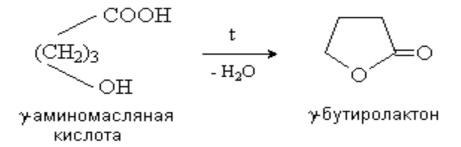
1.2. Химические свойства.

Гидроксикислоты дают реакции, характерные для карбоновых кислот и спиртов, при этом могут затрагиваться как одна, так и обе функции. Наиболее характерные реакции приведены на схеме.

Кроме того, гидроксикислоты имеют ряд специфических свойств, обусловленных присутствием обеих групп и их взаимным расположением.

Отношение гидроксикислот к нагреванию.

Превращения гидроксикислот при нагревании определяются возможностью образования термодинамически стабильных 5-ти- 6-тичленных циклов


α - Гидроксикислоты вступают в реакцию межмолекулярного самоацилирования. При этом образуются циклические сложные эфиры – лактиды.

O OH HO R O CH
$$\stackrel{R}{\longrightarrow}$$
 CH $\stackrel{C}{\longrightarrow}$ CH $\stackrel{C}{\longrightarrow}$ CH $\stackrel{C}{\longrightarrow}$ CH $\stackrel{C}{\longrightarrow}$ CH $\stackrel{C}{\longrightarrow}$ CH $\stackrel{C}{\longrightarrow}$ \stackrel

 β -Гидроксикислоты при нагревании переходят α, β -непредельные кислоты.

$$\begin{array}{ccc} \text{RCHCH$_2$COOH} & \xrightarrow{\text{t}} & \text{RCH=CHCOOH} \\ \mid & & \text{-} \text{H}_2\text{O} \\ \text{OH} & \end{array}$$

 γ - и δ -Гидроксиокислоты претерпевают внутримолекулярное ацилирование с образованием циклических сложных эфиров – *лактонов*.

Специфические реакции α -гидроксикислот.

 α -Гидроксикислоты образуют хелатные комплексы с ионами переходных металлов (Cu^{2+} , Fe^{3+} и др.), которые содержат металл в составе устойчивого 5-тичленного цикла.

В присутствии минеральных кислот α -гидроксикислоты разлагаются с образованием муравьиной кислоты и соответствующего альдегида.

$$\begin{array}{ccc} & & \text{H}^{+}, t \\ \text{RCHCOOH} & & \longrightarrow & \text{RCHO} + \text{HCOOH} \\ & & \text{OH} & & \end{array}$$

1.3. Биологически важные гидроксикислоты.

 Γ ликолиевая кислота $HOCH_2COOH$ содержится во многих растениях, например, свекле и винограде.

Молочная кислота (соли лактаты) $CH_3CH(OH)COOH$.

Широко распространена в природе, является продуктом молочнокислого брожения углеводов. Содержит асимметрический атом углерода и существует в виде двух энантиомеров. В природе встречаются оба энантиомера молочной кислоты. При молочнокислом брожении образуется рацемическая D,L-молочная кислота. D-молочная (мясо-молочная) кислота образуется при восстановлении пировиногралной кислоты под действием кофермента НАД. Н и накапливается в мышцах при интенсивной работе.

Яблочная кислота (соли малаты) HOOCCH(OH)CH₂COOH

Содержится в незрелых яблоках, рябине, фруктовых соках. Является ключевым соединением в цикле трикарбоновых кислот. В организме образуется путем гидратации фумаровой кислоты и далее окисляется коферментом $\mathsf{HAД}^+$ до щавелевоуксусной кислоты.

Лимонная кислота (соли цитраты)

$$OH$$
 $|$
 $HOOC-CH_2-C-CH_2-COOH$
 $|$

Содержится в плодах цитрусовых, винограде, крыжовнике. Является ключевым соединением в цикле трикарбоновых кислот. Образуется из щавелевоуксусной кислоты путем конденсации ее с ацетилкоферментом А и далее в результате последовательных стадий дегидратации и гидратации превращается в изолимонную кислоту.

Ацетил- кофермент А ОН -
$$H_2O$$
 + H_2O + $H_$

Винная кислота (соли тартраты) НООССН(ОН)СН(ОН)СООН.

Содержит два хиральных центра и имеет 3 стереоизомера: D-винную кислоту, L-винную кислоту и оптически неактивную мезовинную кислоту (см. лек. \mathbb{N}^{9} 4). D-винная кислота содержится во многих растения, например, в винограде и рябине. При нагревании D-винной кислоты образуется рацемическая D,L-винная (виноградная) кислота. Мезовинная кислота образуется при кипячении других стереоизомеров в присутствии щелочи и при окислении малеиновой кислоты (см. выше).

2. Оксокислоты

Оксокислоты – гетерофункциональные соединения, содержащие карбоксильную и карбонильную (альдегидную или кетонную) группы. В зависимости от взаимного расположения этих групп различают α -, β -, γ - и т.д. оксокарбоновые кислоты.

2.1. Методы получения.

Для получения оксокислот применимы обычные методы введения карбоксильной и оксогрупп. Специфический метод синтеза β -кетокислот – сложноэфирная конденсация. Методы получения и биологические функции наиболее важных оксокислот приведены в таблице 10.

Таблица 10. Методы получения и биологическая роль оксокислот.

Оксокислота	Методы получения	Распространов в природ биологическ
О Н С−С ОН Глиоксиловая	Окисление этиленгликоля: $ \frac{\text{HNO}_3 \text{ конц.}}{\text{HOCH}_2\text{CH}_2\text{OH}} \longrightarrow \text{OHC-COOH} $	Содержи незрелых ф Являет промежуто продукто ферментат глиоксила цикле
СН3 [—] С−ССН ОН Пировиноградная (соли <i>пируваты</i>)	Окисление молочной кислоты: $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	Централь соединение трикарбон кислот Промежутс продукт молочноки спиртов брожен углевод

Образует Сложноэфирная конденсация: Ацетоуксусная процес метаболи $\begin{array}{c|c} \text{CH}_3\text{--}\text{C} \text{--}\text{CH}_2\text{--}\text{C} \stackrel{\bigcirc}{>} \text{OH} \\ \text{O} \end{array} \qquad \begin{array}{c} \text{2CH}_3\text{COOC}_2\text{H}_5 \\ \text{--}\text{C}_2\text{H}_5\text{COONa, --} 1/2\text{H}_2 \end{array} \qquad \begin{array}{c} \text{CH}_3\text{COCH}_2\text{COOC}_2\text{H}_5 \\ \text{--}\text{C}_2\text{H}_5\text{COONa, --} 1/2\text{H}_2 \end{array}$ высших жи кислот и продукт оки β гидроксима кислот накаплива организме б диабето Промежуто Конденсация диэтилоксалата с этилацетатом: HO C-C-CH2-C OH соединение $\begin{array}{c} (\texttt{COOC}_2 \texttt{H}_5)_2 \; + \; \texttt{CH}_3 \texttt{COOC}_2 \texttt{H}_5 & & & \\ \hline - \; \texttt{C}_2 \texttt{H}_5 \texttt{COONa, - 1/2H}_2 \\ \\ \longrightarrow \; \texttt{C}_2 \texttt{H}_5 \texttt{OCOCOCH}_2 \texttt{COOC}_2 \texttt{H}_5 & & & \\ \hline \end{array} \\ \begin{array}{c} \texttt{H}_2 \texttt{O}, \ \texttt{H}^+ \\ \\ \end{array} \\ \text{HOOCCOCH}_2 \texttt{COOH} \end{array}$ трикарбон кислот. Обра Щавелевоуксусная при окисл яблочной ки (соли *оксалоацетаты*) превраща далее в лим (см. выше) переаминир дает аспарг кислоту (см Nº16) Участвует в $\underset{\text{HO}}{\overset{\circ}{\triangleright}}\text{C-C-(CH}_2)_2\text{-C}\overset{\circ}{\triangleright}\underset{\text{OH}}{\overset{\circ}{\triangleright}}$ трикарбон кислот и яв предшестве

2.2. Химические свойства

важны аминокисл глутаминово аминомасл

Оксокислоты вступают в реакции, характерные для карбоксильной и карбонильной групп. Отличительная черта оксокислот – легкость, с которой протекает их декарбоксилирование.

 α -Кетоглутаровая

 α -Оксокислоты легко отщепляют CO_2 и CO при нагревании в присутствии серной кислоты.

в -Оксокислоты неустойчивы и самопроизвольно декарбоксилируются с образованием кетонов.

$CH_3COCH_2COOH \rightarrow CH_3COCH_3 + CO_2$

β -Оксокислоты и их эфиры обладают специфическими свойствами, которые связаны с их повышенной СН-кислотностью. Повышенная подвижность протонов метиленовой группы обусловлена электроноакцепторным влиянием двух карбонильных групп. В результате β -оксокислоты существуют в виде двух таутомерных форм: кетонной и енольной (см. лек. №11), причем содержание енольной формы в равновесной смеси значительное. Енольные формы дополнительно стабилизируются за счет наличия в них системы сопряженных π -связей и внутримолекулярной водородной связи.

$$CH_{3}$$
 CH_{2} $OC_{2}H_{5}$ \longrightarrow CH_{3} CH $OC_{2}H_{5}$ OC_{2}

кетонная форма ацетоуксусного эфира

енольная форма ацетоуксусного эфира

кислоты

кислоты

Центральное место среди β -оксокислот и их производных занимает ацетоуксуный эфир (этиловый эфир ацетоуксусной кислоты). Существование в виде двух таутомерных форм обуславливает его двойственную реакционную способность. Как кетон, ацетоуксусный эфир присоединяет нуклеофильные реагенты: HCN, NaHSO₃, фенилгидразин. Как енол, присоединяет бром, образует хелатные комплексы с ионами переходных металлов, ацилируется хлорангидридами кислот.

При действии на ацетоуксусный эфир какого-либо реагента в реакцию вступает один из таутомеров. Поскольку второй таутомер за счет смешения равновесия восполняет убыль первого, таутомерная смесь реагирует в данном направлении как единое целое.

$$\begin{array}{c} \text{CH}_3\text{-C-CHBrCOOC}_2\text{H}_5 & \xrightarrow{\text{Br}_2} \\ \text{OH} & \text{CH}_3\text{-C-CH}_2\text{-COOC}_2\text{H}_5 \\ \text{OCOCH}_3 & \text{CH}_3\text{-CC} \\ \text{CH}_3\text{-C-CH}_2\text{-COOC}_2\text{H}_5 \\ \text{OCOCH}_3 & \text{CH}_3\text{-C-CH}_2\text{-COOC}_2\text{H}_5 \\ \text{CH}_3\text{-C-CH}_2\text{-COOC}_2\text{H}_5 \\ \text{OH} & \text{CH}_3\text{-C-CH}_3\text{-C-CH}_2\text{-COOC}_2\text{H}_5 \\ \text{OH} & \text{CH}_3\text{-C-CH}_3\text$$

Ацетоуксусный эфир широко применяется в органическом синтезе как исходное вещество для получения кетонов, карбоновых кислот, гетерофункциональных соединений, в том числе производных гетероциклов, представляющих интерес в качестве лекарственных средств. Так, производные пиразолона используют как исходные вещества в синтезе ненаркотических анальгетиков – антипирина, амидопирина и анальгина.