Chitosan-alginate sponges loaded with silver nanoparticles for biomedical application

A. Yanovska, Ye. Husak, S. Bolshanina, I. Yanko, V. Korniienko, V. Holubnycha
Sumy State University, 2 Rymsky-Korsakov Str., Sumy 40007, Ukraine, yanovskaanna@ gmail.com

Chitosan (Ch) has been recently employed for chitosan-based delivery systems or as haemostatic sponges [1]. It is a cationic polymer, so it can be successfully combined with anionic sodium alginate. In this work we loaded sponges based on Ch , Alg and their combinations (Fig.) with Ag nanoparticles (AgNPs) and examine their antimicrobial effect against biofilms of P. aeruginosa and E. coli depending on AgNPs concentrations.

Fig. SEM images of $\mathrm{Ch} /$ Alg composite materials
The antibacterial activity was defined using zone inhibition test and pour plate technique. The concentration of the bacterial suspension was $10^{5} \mathrm{CFU} / \mathrm{ml}$. Most samples showed inhibitory effect on bacteria growth at AgNPs concentrations from $3.03 \cdot 10^{-6}(a)$ to $8.42 \cdot 10^{-6}(b)$. Sponges doped with AgNPs prevented bacterial growth more effectively then control samples. Moreover, sponge $\mathrm{Alg} / \mathrm{NaHCO}_{3}$ possessed bactericidal activity in both (a) and (b) compositions. Sponge $\mathrm{Ch} / \mathrm{NaHCO}_{3}$ demonstrated stronger bactericidal action for sample (b). Adding of AgNPs improves the antibacterial effect of $\mathrm{Ch}, \mathrm{Ch} / \mathrm{Alg}$ and Alg sponges against Gram-negative bacteria.

Acknowledgements

Government Program "State order for scientific-technical (experimental) development and scientific and technical production". Project 0118U003577 Effectiveness of chitosannanometals antimicrobial action against clinical multiresistant strains.

1. E. Szymańska, K. Winnicka, P. Laurienzo, Mar. Drugs. 13(4) (2015) 1819.
