Colligative Properties of Solutions

How do you get from this...

...to this?

Add an ionic compound!

Pure Solvent vs Solutions

The properties of a pure solvent are different than the properties of a solution made from that solvent.

Characteristic properties such as boiling point and freezing point are changed when a solute is put in a solvent

Colligative Properties

• Properties that depend only on the number of solute particles and not on their identity.

 Since the number of particles per water molecule determines the change in properties of a solution, we need a new concentration term that gives us this relationship

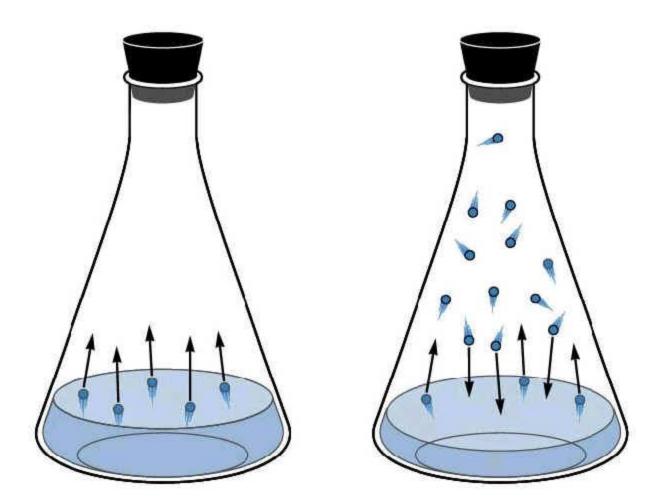
molality

- Molality = moles solute/ kg solvent
- Symbolized by lower case "m"
- Remember: with molarity, we don't know exactly how much solvent we have

 Molality is based on kg solvent which may be converted to moles or grams and therefore # of particles

Molality con't

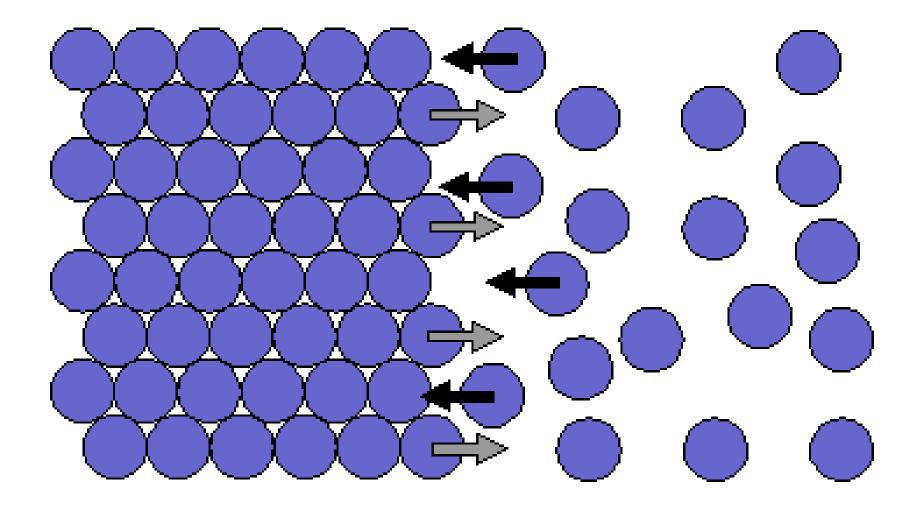
• Therefore, if we have a 1m $C_{12}H_{22}O_{11}$ solution in water, that means we have 1 mole $C_{12}H_{22}O_{11}$ in 1 kg of water.


Or

6.02 x10²³ molecules in 3.34 x 10²⁵ molecules of water

Some Colligative Properties are:

- Vapor pressure lowering
- Boiling point elevation
- Freezing Point depression

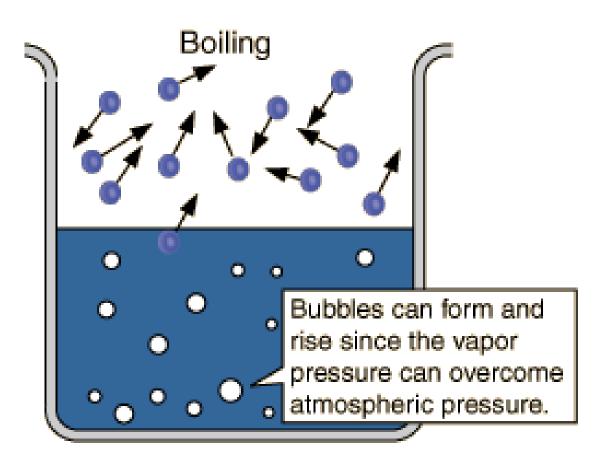

Vapor Pressure

Vapor Pressure Lowering

- Where does vaporization take place?
- The particles of solute are surrounded by and attracted to particles of solvent.
- There are fewer solvent particles at the surface of a solution
- Vapor pressure is less.

Freezing Point Depression

Effect of solutes on freezing


- What has to happen for molecules of a liquid to become solid?
- How would solute particles interfere with this process?
- Freezing point of a solution is always lower than that of the pure solvent

Example

• Salt is added to melt ice by reducing the freezing point of water.

Boiling Point Elevation

What has to happen for boiling to occur?

How would solute particles interfere with this process?

- Boiling point of a solution is always higher than that of a pure solvent.
- Going back to vapor pressure...if vapor pressure is lower in a solution than in the pure solvent, how would that affect boiling point?

Example

 Addition of ethylene glycol C₂H₆O₂ (antifreeze) to car radiators.

Ionic vs Molecular Solutes

- Ionic solutes may produce two or more ion particles in solution thus increasing the number of particles in the solution.
- They affect the colligative properties proportionately more than molecular solutes.
- The effect is proportional to the number of particles of the solute in the solution.

How many particles do each of the following give upon solvation?

- NaCl
- CaCl₂
- Glucose

Freezing Point Depression and Boiling Point Elevation

Boiling Point Elevation

- $\Delta T_b = mk_b$ (for water $k_b = 0.512$ °C/m)
- Freezing Point Depression
- $\Delta T_f = mk_f$ (for water $k_f = 1.86 \text{ °C/m}$)
- Note: m is the molality of the particles, so if the solute is ionic, multiply by the #of particles it dissociates to.

What does this mean??

 If you have a 1 molal solution, the freezing point of a water solution will lower by 1.86°C.

- If you have a 2 molal solution, the freezing point will lower by 2(1.86°C).
- Kf (and Kb) just give you the relationship between molality and change in freezing point/boiling point

Practice

- Calculate the molality of a solution made by mixing 25.0g of sucrose (MW = 342g/mol) in 200.ml H₂O
 - -25.0 g x 1 mol/342 g = .0731 moles
 - $-200. \text{ ml H}_2\text{O x 1g/ml x 1kg/1000g} = .200 \text{kg}$
 - -.0731 moles/.200kg =.365 mol/kg =.365m

Example 1:

- Find the new freezing point of .365m sucrose in water.
 - $\Delta T_{=} 1.86^{\circ}C/m \times .365m = .679^{\circ}C$
 - Careful!! This is the CHANGE in freezing point. You still have to determine the freezing point itself.
 - For water that is easy normal freezing point is 0°C, so just subtract ∆T from this
 - $O .679 = -.679^{\circ}C$

Example 2:

• Find the new boiling point of .365m sucrose in water.

• $\Delta T = .512^{\circ}C/m \ x \ m$

= $.512^{\circ}$ C/m x .365m = $.187^{\circ}$ C Again..this is just boiling point change: 100° C + $.187 = 100.187^{\circ}$ C Which is more effective for lowering the freezing point of water?

- NaCl or CaCl₂
- If we look at the previous problem, we can see that the sucrose solution had a molality of .365. But a sucrose molecule does not ionize in solution

Answers

- NaCl and CaCl₂ both do
- If we had a 0.365m solution of NaCl, we would have 2(0.365m) solution of ions.